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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

Number of Transistors
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This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.
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Continue The Lg Scaling Path

What is needed:
Narrow fins
Mobility enhancement
Conductive metals
Tunable materials
Precision structure control
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The Nanometer Size Scale

Transistor
Scaling ST
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Scaling cannot go on forever because transistors cannot be smaller than atoms
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Yield
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Silicon Wafer
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Metals
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Metallic Bonding

Swarm of delocalised electrons

The outer electrons are so weakly bound to metal atoms that they are free to roam across the
entire metal. Having ‘lost’ their outer electrons, individual metal atoms are more like positive

ions in a swarm of communal electrons
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Insulators
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Semiconductors

Shared electrons
of a covalent
bond.
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Lattice Constant

1=
A/
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Material | Lattice constant (A)
C (diamond)  3.567
C (graphite) a=2.461
c=6.708
Si 5.431
Ge 5.658
AlAs 5.6605
AlP 5.4510
AlSb 6.1355
GaP 5.4505
GaAs 5.653
GaSb 6.0959
InP 5.869
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N-type Semiconductors
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P-type Semiconductors
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Diodes
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(b) Reverse
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Field Effect Transistor (FET)
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MOSFET
Metal Oxide Semiconductor FET

Gate

Source Drain
T OxideT
A
I | \‘ I |
. - L ]
<€ ] > p
Body

Il 7'
7] O B. E. Boser 10T49: Semiconductors

17



Switch Logic — Example: Adder
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Switch Logic

Building an Adder with Switches

Now that you are comfortable adding binary numbers together, let's see how we could make an adding machine using transistors. We will use simple light switches
here to make things clearer—but this is not an oversimplification: the transistor logic works very similarly. For this example, we will build part of an adding machine
that can add two binary digits (bits) together.

Here are the possible answers obtained from adding two bits:

ABICarrySum
ooffo o
ot1fo 1
10fo 1
11t o

We'll just design the "Carry" output of the adder here (the Sum is a bit harder, but also can be done using only transistor switches). The Carry is 1 only if both of our
inputs are 1. That is, the Carry is 1 when input A AND input B are 1. Thus we can use two switches in a row just as shown above to build the Carry output of our
adding machine.

A B
| | Carry

4 r—

Using combinations of transistor switches, we can build circuits to add, subtract, multiply, and divide. We can also use them to make very simple decisions, by using
the logical AND or the logical OR functions.
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CMOS

n-channel MOSFET p-channel MOSFET

silicon nitride s e . N
epacer silicide ’ poly silicon silicide ’ poly Slllcon

n* doped ‘ p* dope
gate oxide

silicide silicide silicide silicide

il T
U O B. E. Boser 10T49: Semiconductors 20



Acronyms

 Transistor
— Semiconductor device

* Field Effect Transistor (FET)
— Specific physical implementation
— Alternative: Bipolar Junction Transistor (BJT)

. Metal Oxide FET (MOSFET)

— Particular realization of FET

« NMOS, PMOS
— Types of MOSFET transistors

« CMOS
— Process capable of fabricating NMOS and PMOS FETs
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Batch Fabrication
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Semiconductor Production

Semiconductor
Raw materials Front-end fabrication achinery is sold to
Ingots are formed Semiconductors are producers for front- A
from pure silicon created on silicon wafers  and and back-end Design
gnd then sliced using variqus processes manufacturing. ?mlconductor h
into wafers, and techniques (e.g., €signs are created
etching, photolithogra- using highly sophisti-
cated computer and

. materials depositing).
phy—P 9) software design tools.

Back-end assembly,
test, and packaging
Semiconductors are

cut out of the wafers,
tested, encapsulated
into plastic packages,
and prepared for
purchase.

A)

. h Electronic product sales
. Electronic product manufacturing Final electronic products
't:'n'.Sth gefglcondtmtors ?re ts‘°|df with semiconductors inside
ypically to downstream electronic . W———
product manufacturers, and incorpo-
rated into electronic products. For hustiative gliiasas oniy.
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IC Fabrication Overview

Procedure of Silicon Wafer Production
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Processed Silicon Wafer Cross-Section
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Lithography

DT Prepare Wafer
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Example 1: XTR Junctions
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Example 2: Interconnect
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More of same ...
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PROCEEDINGS OF THE IEEE, VOL. 70, NO. 5, MAY 1982

Silicon as a Mechanical Material

KURT E. PETERSEN, MEMBER, [EEE

420
Abstract-Single-crystal silicon is being increasingly employed in a
ﬂddydmcmﬂmmbumnfﬂswdlw

but rather because of its excellent mechanical

pmpuﬁu. In addition, recent trends in the literature indi-
wmitil:hc hlendhlhmeofsllknaa material

ultimate alroalrulgeoﬂlemhe.
batch-fabricated. perfor—cemrsaﬂtramhm are
easily interfaced with the rapidly . This
mhwdmrﬂiuﬁeﬂvm m&«-::m&
material, the relevant mec of silicon, and the pro-
cessing techniques which are spec Iﬂthﬂcmnchinlmum
Fimally, &epﬂnﬂﬂsdtﬂsm numer

ous detailed examples from the literature. tisdewtlﬂ n will
continue to be exploited in a wide variety of mechanical
applications complementary to its traditional role as an electronic
material.  Furthermore, these mmltidisciplinary uses of silicon will

alter the way we think about all types of miniature me
chanical devices and componenta

[. INTRODUCTION
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miniaturized mechanical devices and components must be
integrated or interfaced with electronics such as the examples
given above.

The continuing development of silicon micromechanical
applications 1s only one aspect of the current technical drive
toward mimiaturization which is being pursued over a wide
front iIn many diverse engineering disciplines. Certainly silicon
microelectronics continues to be the most obvious success in
the ongoing pursuit of mmmaturization. Four factors have
played crucial roles in this phenomenal success story: 1) the
active matenal, silicon, 15 abundant, imnexpensive, and can now
be produced and processed controllably to unparalleled stan-
dards of purity and perfection; 2) silicon processing itself is
based on very thin deposited films which are highly amenable
to miniaturization; 3) definition and reproduction of the
device shapes and patterns are performed using photographic
technmiques which have also, historically, been capable of high
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MEMS Acceleration Sensor

1{170 T B. E. Boser 10T49: Semiconductors 33



Gears? 3D?

1,80KX 38KV WD:37MM  S:00000 P:00621
51 lf ——————————
| ¥

1{170 T B. E. Boser [0T49: Semiconductors 34



/_’/70 T B. E. Boser

MEMS Process (Example)
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