#### **Electronics for IoT**

## H-Bridge

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

## DC Motor Speed (RPM) Control

- Objective: control
  - Direction of Rotation
  - Speed / Torque
- Forward:
  - Vary voltage to set speed
  - E.g. 6V → full speed, 3V → half speed
- Reverse:
  - Flip terminals: e.g. -6V
- Brake: Short terminals
- Never: open terminals
  - Why?



DC motor:

2 electrical terminals to apply power

# H-Bridge





### **On-Off Control**





#### Inductance

#### Typical Brushed Motor in Cross-section





#### Calculate (just like inertia). E.g.

$$L = \frac{N^2 \mu A}{l}$$
 
$$\mu = \mu_r \mu_0$$



Where,

L = Inductance of coil in Henrys

N = Number of turns in wire coil (straight wire = 1)

 $\mu$  = Permeability of core material (absolute, not relative)

 $\mu_r$  = Relative permeability, dimensionless ( $\mu_0$ =1 for air)

 $\mu_0 = 1.26 \times 10^{-6} \text{ T-m/At}$  permeability of free space

A = Area of coil in square meters =  $\pi r^2$ 

1 = Average length of coil in meters

Finite element simulation for more complicated geometries

## **PWM Speed Control**







### DRV8833 H-Bridge



**DRV8833** 

SLVSAR1E - JANUARY 2011-REVISED JULY 2015

#### DRV8833 Dual H-Bridge Motor Driver

#### 1 Features

- Dual-H-Bridge Current-Control Motor Driver
  - Can Drive Two DC Motors or One Stepper Motor
  - Low MOSFET ON-Resistance: HS + LS 360 mΩ
- Output Current (at V<sub>M</sub> = 5 V, 25°C)
  - 1.5-A RMS, 2-A Peak per H-Bridge in PWP and RTY Package Options
  - 500-mA RMS, 2-A Peak per H-Bridge in PW Package Option
- Outputs can be in Parallel for
  - 3-A RMS, 4-A Peak (PWP and RTY)
  - 1-A RMS, 4-A Peak (PW)
- Wide Power Supply Voltage Range: 2.7 to 10.8 V
- PWM Winding Current Regulation and Current Limiting
- Thermally Enhanced Surface-Mount Packages

#### 3 Description

The DRV8833 device provides a dual bridge motor driver solution for toys, printers, and other mechatronic applications.

The device has two H-bridge drivers, and can drive two DC brush motors, a bipolar stepper motor, solenoids, or other inductive loads.

The output driver block of each H-bridge consists of N-channel power MOSFETs configured as an H-bridge to drive the motor windings. Each H-bridge includes circuitry to regulate or limit the winding current.

Internal shutdown functions with a fault output pin are provided for overcurrent protection, short-circuit protection, undervoltage lockout, and overtemperature. A low-power sleep mode is also provided.

The DRV8833 is packaged in a 16-pin WQFN package with PowerPAD™ (Eco-friendly: RoHS & no Sb/Br).

## **Block Diagram**





## **PWM Control**

| Table 2. PWM Control of M | lotor Sp | eed |
|---------------------------|----------|-----|
|---------------------------|----------|-----|

| xIN1 | xIN2 | FUNCTION                |
|------|------|-------------------------|
| PWM  | 0    | Forward PWM, fast decay |
| 1    | PWM  | Forward PWM, slow decay |
| 0    | PWM  | Reverse PWM, fast decay |
| PWM  | 1    | Reverse PWM, slow decay |

## **Breakout Board Wiring**





10