
2 Wheel Self-Balancing 
Robot
Eric Wang



Segway



Handle (Boston Dynamics)



Development Board: WiPy 2.0
● ESP32 dual core microcontroller
● Wifi
● MicroPython



Sensors: MPU9250
● Accelerometer
● Gyroscope
● Magnetometer 



Motor Controller: DRV8833
2 H-Bridges - can drive 2 DC motors or 

1 stepper motor



Circuit Diagram

Esp 32 



Move motors in direction of tilt

1. Determine tilt angle
2. Balance by correcting tilt angle

Balancing



Determining Tilt Angle With Gyroscope

● Gyroscope has noise and θ will drift over long periods of time



θ

Determining Tilt Angle With Accelerometer

Inaccurate when other forces are present

g

+y

+zaccel y
accel z

Accelerometer coord system

θ



Complementary Filter

● Combines accelerometer 
and gyroscope data to give 
a good estimate for angle



Modified
Complementary Filter

Change the weight of 
accelerometer data based on 
how close it is to 1g



PID Controller
Control loop feedback mechanism

Proportional, integral, and derivative 
terms



PID constants
1. Make Kp, Ki, and Kd equal to zero.
2. Adjust Kp. Too little Kp will make the robot fall over, because there's not enough 

correction. Too much Kp will make the robot go back and forth wildly. A good enough 
Kp will make the robot go slightly back and forth (or oscillate a little).

3. Once the Kp is set, adjust Kd. A good Kd value will lessen the oscillations until the robot 
is almost steady. Also, the right amount of Kd will keep the robot standing, even if 
pushed.

4. Lastly, set the Ki. The robot will oscillate when turned on, even if the Kp and Kd are set, 
but will stabilize in time. The correct Ki value will shorten the time it takes for the robot 
to stabilize.

https://maker.pro/projects/arduino/build-arduino-self-balancing-robot



Placement of Parts
● Heaviest part on top

○ Reduces angular acceleration due to gravity - slower fall

○ PID controller can make adjustments before robot has tilted too far



Demo Video


