| #1 | #2 | #3 | #4 | |----|----|----|----| | | | | | - Open-book, one 8.5 by 11 inch page of <u>handwritten</u> notes (two sided) - Write all your work and answers on the exam sheet - Clearly mark results with a box around them - Show your work (large and small-signal circuit diagrams, design equations) - Cross out incorrect answers. If you present two or more inconsistent answers we invariably grade the wrong one. - All problems have equal weight. - Notation: $V_x = V_X + v_x$, where V_X is the large signal bias and v_x is the small signal value. - The math is trivial for all problems, if approached correctly. This is not a course about complicated algebra and calculus! Even I could solve the problems, and I had many years to forget whatever math I learned. Use the following parameters in all problems, unless otherwise specified: Device Parameter values BJT $I_s = 1 \, \text{fA}, \, \beta = 100, \, \text{and} \, V_A = 100 \, \text{V}$ NMOS $|V_{TH}| = 400 \, \text{mV}, \, \mu_n C_{ox} = 200 \, \mu \text{A} / \text{V}^2, \, \lambda = 0.02 \, \text{V}^{-1}, \, \gamma = 0 \, \text{V}.$ PMOS $|V_{TH}| = 400 \, \text{mV}, \, \mu_p C_{ox} = 100 \, \mu \text{A} / \text{V}^2, \, \lambda = 0.02 \, \text{V}^{-1}, \, \gamma = 0 \, \text{V}.$ Unless otherwise specified, assume room temperature and $V_t = 25 \text{ mV}$. - 1. Calculate the small-signal output resistance R_o at terminal V_o of the circuit below. The circuit is biased such that the large signal output voltage $V_O = 1 \, \text{V}$. - a) Draw the small-signal model and calculate the numerical values of all small-signal parameters. - b) Derive an algebraic expression for R_o . You may use the shorthand $r_x \parallel r_y$. - c) Calculate the numerical value of R_0 . Use $V_{cc}=3\,\mathrm{V}$, $R_1=1\,\mathrm{k}\Omega$, $R_2=5\,\mathrm{k}\Omega$, $I_1=500\,\mu\mathrm{A}$. 2. Determine the value of V_G such that the channel resistance (resistance between the source and the drain of M_1) is $1 \, \mathrm{k}\Omega$ for $V_i = 2 \, \mathrm{V}$ and $I_D = 0 \, \mathrm{A}$. Use $W_1 = 2 \mu \text{m}$ and $L_1 = 180 \text{nm}$. - 3. Analyze the amplifer shown below for $V_{dd}=3\,\mathrm{V}$, $V_O=V_{dd}/2$, $W_1=W_2=5\,\mu\mathrm{m}$ and $L_1=L_2=0$ $350 \,\mathrm{nm}$. M_2 is biased in saturation. - a) What is the region of operation of M_1 ? - b) Draw the small-signal model and calculate the values of all small-signal parameters. Beware: - $|V_{DS1}| \not \ll |2(V_{GS1} V_{TH})|$. c) Derive an algebraic expression for the small-signal voltage gain $a_v = v_o/v_i$. You may use the shorthand $r_x \parallel r_y$. d) Calculate the value of a_v . 4. Design a circuit such that $v_0 = r_x i_s$ with $r_x = 10 \,\mathrm{k}\Omega \pm 2\,\%$ using a single NPN transistor ($V_A = 0\,\mathrm{V}$) and as many resistors and (ideal) bias sources (current or voltage) as you like (fewer is better and helps avoid mistakes). The value of R_s varies in the range $1\dots 10\,\mathrm{M}\Omega$. The source i_s is a reverse biased diode and requires V_s in the range $2\,\mathrm{V} \le V_s \le 3\,\mathrm{V}$ to work properly. Stay close to the minimum power dissipation (not more than $2\mathrm{x}$). Use the following sequence (you may need to iterate): - a) Determine the type of amplifier configuration (CE, CB, CC) best suited for this problem. - b) Draw a prototype large signal model including all biasing elements. You may need to iterate, e.g. modify or add biasing elements during the design process. - c) Draw the small-signal diagram and determine the small-signal parameters required to meet the specifications. - d) Calculate the large signal parameters including the values of all bias sources. - e) Verify that your circuit meets the specifications. You get points for this, even if you determine that you miss a spec and run out of time (or ideas) for addressing the problem.