Due in the "EE 105 box" near 125 Cory Hall by 5pm on Friday 9/28/2012.

Read Chapter 5 in B. Razavi: Fundamentals of Microelectronics

- 1. In the circuit below, gizmo X_1 (e.g. a smart phone) draws $I_X = 0 \dots 50$ mA depending on operating mode. Devices $D_1 \dots D_4$ are silicon diodes at room temperature.
 - a) The current through the diodes is $I_D = 60 \,\text{mA}$ for $V_x = 2.7 \,\text{V}$. What is the diode current for $V_x = 2.94 \,\text{V}$?
 - b) The value of R_1 is adjusted such that $I_D = 60$ mA for $V_x = 2.7$ V and $I_x = 0$. Calculate the values of V_x and I_D for $I_x = 50$ mA.
 - Suggestion: Use the approximation that the current though R_1 does not change. This simplifies the math and introduces only a small error. Why is this a good approximation?
 - c) Find the minimum value of R_1 such that V_X remains in the range 2.4 ... 2.64 V for $I_X = 0$... 20 mA.

- 2. In the circuit below V_1 and V_2 are adjusted such that $I_1 = I_2 = I_0 = 2$ mA. Calculate the fractional change of I_1 and I_2 (i.e. $I_1/I_0 1$ and $I_2/I_0 1$) in percent for the following circuit modifications:
 - a) The values of V_1 and V_2 are decreased by 30 mV.
 - b) The values of V_1 and V_2 are increased by 30 mV.

Transistor parameters: $I_s = 1$ fA, $\beta \to \infty$, $V_A \to \infty$.

Keep in mind that the full 30 mV appears across the base-emitter junction of Q_1 . For Q_2 , however, the change splits between base-emitter junction and R_1 . This split is very uneven—most of the change appears about one of the two devices. Which one and why? Why does this realization considerably simplify the problem?

- 3. The circuit below is called "proportional to absolute temperature" (PTAT) reference.
 - a) Derive an analytical expression for the voltage V_X (large signal).
 - b) Calculate the value of $dV_{\rm X}/dV_{\rm CC}$. Why is this exciting? And why in practice do we not quite get this "ideal" result?
 - c) Calculate the value of $dV_{\rm X}/dR_1$. Why is this exciting? And why in practice do we not quite get this "ideal" result?
 - d) What is the value of dV_X/dT , where T is the absolute temperature?
 - e) Suggest possible uses for this circuit. There are quite many!

Assume that all transistors are in the forward active region, have the same I_s and are at the same temperature. Use $\beta \to \infty$ and $V_A \to \infty$ to keep the equations simple.

Hint: Determine the ratio of the collector currents in Q4 and Q5 and write equations for their V_{BE} 's.

- 4. Problem 5.18 in B. Razavi: Fundamentals of Microelectronics.
- 5. Problem 5.42 and 5.43 in B. Razavi: Fundamentals of Microelectronics.
- 6. Problem 5.55 in B. Razavi: Fundamentals of Microelectronics.
- 7. The circuit below is called a common-emitter amplifier with emitter degeneration.
 - a) Derive analytical expressions for the small-signal input resistance r_i at port V_i and the small signal voltage gain $a_v = v_o/v_i$ as a function of R_E , R_L , g_m , and r_π (assume $r_o \to \infty$).
 - b) Determine the g_m required for $a_v = -10$ with $R_E = 1 \,\mathrm{k}\Omega$ and $R_L = 10 \,\mathrm{k}\Omega$. Use $\beta = 100$.
 - c) Determine the large signal parameters, I_C and I_{Bias} . Use $I_s = 1$ fA, $\beta = 100$, and $V_A \to \infty$.
 - d) What is the value of r_i ?
 - e) Repeat (b), (c) and (d) for $R_E = 0$. How does r_i change?
 - f) Adding a degeneration resistor R_E gives you additional design opportunities. Explain the advantages and disadvantages of increasing R_E and situations where you might use this resistor.

