Name & SID: \_\_\_\_\_

| #1 | #2 | #3 | #4 | #5 | #6 |
|----|----|----|----|----|----|
|    |    |    |    |    |    |

- Open-book, two 8.5 by 11 inch page of <a href="https://handwritten.notes">handwritten</a> notes (two sided)
- All exam questions have equal weight.
- Write all your work and answers on the exam sheets.
- Show your work (large and small-signal circuit diagrams, analysis/design equations).
- Make (and verify!) appropriate assumptions. For example, transistor  $r_0$  has often—but not always—negligible (< 3%) effect on circuit operation. Ditto for intrinsic and extrinsic device capacitors.
- Clearly mark results with a box around them
- Cross out incorrect answers. If you present two or more inconsistent answers we invariably grade the wrong one.
- Notation:  $V_x = V_X + v_x$ , where  $V_X$  is the large signal bias and  $v_x$  is the small signal value.

Unless otherwise specified, use the following parameters:

| <u>Device</u> | <u>Parameter values</u>                                                                                                                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BJT           | $I_s=1\mathrm{fA},\beta=100$ , and $V_A=100\mathrm{V}$                                                                                                                                                          |
| N/PMOS        | $ V_{TH}  = 400 \text{ mV}, \lambda = 0.02 \text{ V}^{-1}, \gamma = 0 \text{ V}, L_{\min} = 180 \text{ nm}$<br>$C_{ox} = 10 \text{ fF}/\mu\text{m}^2, C_{ol} = 0.2 \text{ fF}/\mu\text{m}, C_{SB} = C_{DB} = 0$ |
| NMOS<br>PMOS  | $\mu_n = 300 \mathrm{cm}^2/\mathrm{Vs}$<br>$\mu_p = 150 \mathrm{cm}^2/\mathrm{Vs}$                                                                                                                              |
| _             | $V_t = 25 \mathrm{mV}$                                                                                                                                                                                          |

- 1. In the circuit below,  $V_{ic}$  is adjusted such that  $V_{oc} = 0 \text{ V}$ .
  - a) Draw the low-frequency small-signal differential-mode half-circuit model. Calculate the values of all low-frequency small-signal parameters ( $r_o$ 's, etc.).
  - b) Calculate the value of the low-frequency small-signal differential-mode gain,  $A_{dm}$ , of the circuit.
  - c) Draw the low-frequency small-signal common-mode half-circuit model. Specify the values of all low-frequency small-signal parameters.
  - d) Calculate the value of the low-frequency small-signal common-mode gain,  $A_{cm}$ , of the circuit.
  - e) Because of manufacturing imperfections, the values of resistors  $R_1$  and  $R_2$  are slightly different:  $R_1 = R_o + \Delta R/2$  and  $R_2 = R_o \Delta R/2$  with  $R_o = 10 \, \mathrm{k}\Omega$  and  $\Delta R = 0.05 R_o$ . Calculate the low-frequency small-signal common-mode to differential gain,  $A_{cdm}$ , and the common-mode rejection ratio, CMRR.
  - f) Describe a circuit modification resulting in at least a two-orders-of-magnitude improvement of the CMRR. You do not need to design the modification.



2. You are to design an 8-bit Digital-to-Analog Converter (DAC) based on the circuit shown below. It comprises 255 identical current sources  $I_1$  to  $I_{255}$ , each generating a current  $I=10\,\mathrm{mA}/255\approx 39\,\mu\mathrm{A}$ . Switches  $S_1$  to  $S_{255}$  control the amount of this current flowing into the load  $R_L$ . When all swiches are open, the current in  $R_L$  is zero, and hence  $V_o=0\,\mathrm{V}$ . When all switches are closed, the current from all sources flows into  $R_L$  and  $V_o=10\,\mathrm{mA}\times R_L=1\,\mathrm{V}$ . Intermediate output voltages are produced by closing some, but not all, switches.

You are to design the circuit in the dashed box shown below. All current sources  $I_1$  to  $I_{255}$  are identical, and the switches are ideal (you do not need to design them). Use only MOS transistors (n-type and p-type are available) in your design, and the current from the reference  $I_{ref}$  (specify the value needed for your circuit to meet specifications). To meet DAC accuracy requirements, the output resistance of each current source  $I_1$  to  $I_{255}$  must be at least  $10\,\mathrm{M}\Omega$ .

Minimize circuit area (i.e. the number and size of the transistors). For simplicity, assume that  $\lambda$  does not scale as a function of channel length.

Draw the large-signal circuit diagram of sources  $I_1$  and  $I_2$  including how the interface to  $I_{ref}$ . Specify the size (W and L) of all transistors and demonstrate that your circuit meets all requirements (e.g. calculate the output resistance).

*Relevance*: circuits like this one are used in the VGA interface of computers. Millions of units are shipped every month!



3. Design a circuit replacing the dashed box shown below such that the small-signal transimpedance

$$z_x = \frac{v_o}{i_s} = \frac{R_x}{1 + \frac{s}{\omega_h}}$$

for  $R_x = 1 \,\mathrm{k}\Omega$ ,  $\omega_b = 2\pi \times 500 \,\mathrm{MHz}$  and  $C_s = 10 \,\mathrm{pF}$ . Minimize current consumption. Ignore all capacitors except  $C_s$ . Draw the complete large-signal circuit diagram, mark the input and output, and specify the values of all components.

Available components: BJTs (n-type and p-type), ideal constant voltage and current sources, resistors.

*Relevance*: circuits like this one are used in front-end circuits for applications including fiber-optic receivers and cameras.



4. The circuit below is biased such that all transistors are in saturation and the large-signal output voltage  $V_O = 0\,\mathrm{V}$ . Determine the minimum value of  $V_{Bias}$  required to keep  $M_1$  in saturation and the values of W and  $I_{DD}$  such that the low-frequency smal-signal gain  $a_{vo} = \left|\frac{v_o}{v_i}\right| = 10$  and the 3-dB bandwidth of the circuit  $f_B = 800\,\mathrm{MHz}$ . Minimize  $I_{DD}$ .



5. In the circuit below,  $M_1$  and  $M_2$  are used as switches to control current flow between nodes  $V_1$  and  $V_2$ . The control voltages  $V_{c1}$  and  $V_{c2}$  are set to 0 V and 3 V to turn the switch on, and 3 V and 0 V to turn the switch off.

Determine the minimum width of  $M_1$  and  $M_2$  required such that the maximum resistance  $R_{on}$  between nodes  $V_1$  and  $V_2$  is  $10\,\Omega$  when the switch is on and  $V_1$  varies between  $0\,\mathrm{V}$  and  $3\,\mathrm{V}$  for  $V_2\approx V_1$ . Choose  $L_1=L_2=180\,\mathrm{nm}$ . For which value of  $V_1$  does  $R_{on}$  reach its maximum?

*Relevance*: thousands of switches like this one tick along in the analog-to-digital and digital-to-analog converters used in audio and video cards, cameras, or radios.



- 6. In this problem, the sensitivity of device parameters to temperature T is relevant. Use  $V_t = \frac{k_B T}{q_e}$  with  $k_B = 1.38 \times 10^{-23} \, \text{m}^2 \text{kg} \, \text{sec}^{-2} \, \text{K}^{-1}$  and  $q_e = 1.6 \times 10^{-19} \, \text{C}$ .
  - a) Determine the ratio of the drain currents  $\frac{I_{d1}}{I_{d2}}$  of  $M_1$  and  $M_2$ . Assume both devices are in saturation. Note  $W_1 \neq W_2$ .
  - b) Calculate the drain current  $I_{d1}$  of  $M_1$  as a function of temperature T and supply voltage  $V_{DD}$  and fill in the table below. Hint:  $V_{BE1} \neq V_{BE2}$ .

| T     | $V_{DD}$ | $I_{d1}$ |
|-------|----------|----------|
| 300 K | 3 V      |          |
| 200 K | 3 V      |          |
| 300 K | 5 V      |          |

c) Earlier in the course we have seen that electron and hole mobility depend on temperature. Expain the effect on  $I_{d1}$ .

*Relevance*: Most integrated circuits contain a reference like this one or a variation thereof. The current in  $M_1$  is mirrored to circuit elements all over the chip.

